
VXAO-A113 723 STANFORD UNIY CA DEPT OF COMPUTER SCIENCE F/f 9/2
AUTOMATIC CONSTRtUCTION~ OF SPECIAL PURPOSE PROORAMS, 1W
JAN 82 C GOAD MDA903-80-C-0102

UNCLASSIFIED STAN-CS-S2-897 NL

-E E

January2982 Report. No. STAN-CS-82-897)

Also numbered:

AIAI-344

Automatic Construction
t. of Special Purpose Programs

by

Chris Goad

/

Department of Computer Science

Stanford University
Stanford. CA 94305

DTICS ELCTE

APR221982
L,

0U1
~: D

-
ANI;;

DISTRIBUTION STAT' ;r~ 82 04 08 042
Approved for publi, ~.~.o

Distribution Unlimited

Automatic Construction of Special Purpose Programs

Chris Goad
Computer Science Department

Stanford University

ABSTRACT

According to the usual formulation of the automatic programming task, one starts with a
specification of a programming problem, and seeks to automatically construct a program satisfying
that specification. This paper concerns a different style of automatic programming. Rather than
defining the class of programming problems to be dealt with by the language in which those
problems are formulated, we instead consider classes of problems defined in ordinary mathematical
terms. Also, our aims are different from the traditional aims of automatic programming in that we
are interested primarily in increasing the efficiency of computations, rather than in transfering the
burden of programming from human to computer. Let a(p, z, y) be a ternary predicate. Suppose
that in the course of some large computation we are obliged to repeatedly compute values of y
with a(p, x, y) from given values of p and x. Suippose further that in the sequence of p's and z's to
be treated, p changes slowly and x rapidly. Then we seek to automatically synthesize a fast special
purpose program Ap for each p; Ap is expected to compute a y with a(p, z, y) when given z as input.
We present one example of special purpose automatic programming in detail, namely, a method for
synthesizing special purpose programs for eliminating the hidden surfaces from displays of three
dimensional scenes. (Hidden surface elimination is one of the central problems in three dimensional
computer graphics). In a test of the method, a synthetic program specialized to treating a particular
scene - but from an arbitrary point of view - proved to be an order of magnitude faster than the
best available general purpose algorithm.

Acoession For

NTIS GRA&I
DTIC TAB
Unannounced 0
Justification-

Distribut ion/

Availability Codes

Avail and/or
Dist Special COPY

This research was supported in part by the National Science Foundation under Grant MCS81-
04873 and in part by the Advanced Research Projects Agency of the Department of Defense under
Contract MDA903-80-C-0102

Automatic Construction of Special Purpose Programs

1. Introduction

The automatic programming problem as traditionally formulated is that of passing automati-
cally from specifications of programs (expressed in some particular formal language) to programs
which satisfy those specifications. We will be concerned here with a different style of automatic
programming. Rather than defining the class of programming problems to be dealt. with by the lan-
guage in which those problems arc formulated, we will instead consider smaller and more manage-
able classes of programming problems; classes of problems defined in ordinary mathematical terms.
Also, our aims are different from the traditional aims of automatic programming in that we are
interested primarily in increasing the efficiency of computations, rather than in transfering the
burden of programming from human to computer. (There is of course some overlap between these
aims.)

We will introduce the kind of automatic programming which we have in mind by means of an
example - an example which will be treated at length later in the paper. The example concerns
an important computational problem from three dimensional graphics, namely, the hidden surface
elimination problem. The hidden surface elimination problem is that of determining, given a
formal description of one or more opaque objects in three dimensional space, which surfaces of
those objects are visible from a given point of view, and which are hidden behind other objects
in the scene. In many applications of three dimensional computer graphics, such as computer
animation and flight simulation, the appearance of the same scene must be computed repeatedly
for many different positions of the viewer. Several algorithms for hidden surface elimination have
been devised which exploit this property of an application (which is conventionally referred to as
"object coherence"). In each case, the algorithms proceed by first constructing a suitable data

structure describing the scene; this is done "off-line". Then the data structure is used at runtime
for performing the hidden surface computation for each position of the viewer.

Another way of exploiting this kind of coherence is to automatically construct a different
special purpose program for each scene treated. This scheme involves devising an automatic
synthesis method M : M is a program which takes a scene s as input, and yields a special purpose
program Q. as output. Q. in turn takes the position of the viewer as input and produces a suitable
representation of the scene with hidden surfaces removed as output. Since Qa has a very limited
task to perform, it is potentially much faster than any general purpose algorithm for hidden surface
elimination would be for the same scene. We have applied the automatic programming scheme
to hidden surface elimination, with good results. The special purpose programs which we have

- 1produced are indeed much faster than any general purpose algorithm to be found in the computer
graphics literature.

The hidden surface example illustrates a very general method for improving the efficiency of
computation by use of automatic programming. The essential property of the example from the

standpoint of automatic programmming is this: a computation taking two inputs (here, the scene a
and the viewer position p) is performed repeatedly in a context where the first input changes only
occasionally whereas the second input changes rapidly. Any situation which exhibits this property
is a candidate for special purpose automatic programming; we may attempt to develop a synthesis
method which takes the slowly changing input and generates a fast special purpose program; the
special purpose program in turn takes the second input and completes the computation. An overall

.i1

......
6o

gain in efficiency is realized *if the time saved by the use or the special purpose programs on the
rapidly changing input exceeds the tine lost in the occasional generation of a new special purpose
program upon presentation of a new value of the slowly changing input.

Let us restate the points of the last paragraph in more formal terms. Let a(p, x, y) be a ternary
predicate. Suppose that in the course of some large computation we are obliged to repeatedly
compute values of y with a(p, x, V,) from given values of p and x, and that in the sequence of p's
and x's to be treated, p changes slowly, and x rapidly. The automatic programming problem for
a is just that of automnatically passing from any value for p to a program for Xx y.a(p, x, y). That
is, we want a program S,, such that for each p, and each x, a(p, x, S,0 (p)(x)) holds. The utility of
a solution to the automatic programming problem defined by a depends on the factors mentioned
in the last paragraph.

In the situation described above, where yi with a(p, x, V) is to be computed from slowly changing
p and rapidly changing x, we will say the sequence of inputs exhibits sweep coherence. (The picture
behind this term is that of a ray performing a circular sweep about a point, with x "attached"
farther out than p, so that the position of x changes more rapidly than that of p. Evidently,
object coherence in three dimensional graphics is an instance of sweep coherence.) There is a
conventional scheme for exploiting sweep coherence which was alluded to earlier in connection
with hidden surface elimination. Namely, one devises a data structure which encodes the relevant

value of x is given. To take the archetypical computer science example, if one needs to repeatedly
determine whether a number x belongs to a list p of numbers, for many values of x but only a
few of p, one proceeds by sorting each new p, and then using binary search to determine whether
each successive x belongs to the current p. Note that there is no convincing way to formally
distinguish between the "data structure scheme" and the "automatic programming scheme". The
reason for this is that automatically constructed special purpose programs may be regarded as data
structures which, together with their arguments, are passed to the interpreter for the language
in which the programs are expressed. H-owever, the fact that the distinction between a program
and a data structure which is not a program cannot be convincely formalized does not make it a
useless distinction. For the purposes of this paper, the word "program" is to be read in its ordinary
informal sense: a program is a description of a method of computation which is expressible in a
programming language of the usual kind.

The principal purpose of this paper is to present evidence that special purpose automatic
programming is a useful enterprise - or, more precisely, to present new evidence, since some such
evidence exists already in the computer science literature (see section 6). Of necessity, individual

~1 concrete examples are the only kind of evidence which can be expected, since at the outset we are
supposing that for each programming task (given by a ternary predicate a) a different synthesis

program S,, will be required. As already indicated, we will consider one example in detail, namely,
4 the hidden surface elimination problem.

Another purpose of the paper is to indicate that although different synthesis programs are
needed for different automatic programming problems, there are nonetheless general - and, in fact,
quite primitive - techniques which can be used for a variety of problems. These generally useful
techniques are for the most part already in use in automatic programming and automatic program
transformation of the traditional kind. Our example shows that these general techniques, although
not always very effective alone, can produce good results when combined with considerations which
are particular to the (narrow) class of programming problems treated in an instance of special

2

purpose automatic programming - that is, particular to the mathematical specification which we
have designated a.

Before closing the introduction,we wish to emphasize the following point. The character of the
problems which are treated in special purpose automatic programming is very different from the
character of those dealt with in automatic programming of the traditional kind. The traditional
style of automatic programming work deals with universal or metamathernatically defined classes of
problems in that the collection of problems to be solved by a real or ideal automatic programming
system is defined by giving the language in which the problems are to be formulated, rather than
by reference to particular objects and operations to be carried out on those objects. In computing
practice as a whole, this metamathematical or universal style of defining the class of problems to be
solved by a particular program is very unusual. The reason for this is simply that such methods as
have been found for attacking universal classes of problems are rarely efficient enough to compete
with special purpose methods designed for the particular situations which come up in practice.
One prefers to solve broad classes of problems at one blow if possible, but such possibilities do not
often arise.

In special purpose automatic programming, on the other hand, the class of problems to be
solved by any particular synthesis program is defined by an ordinary mathematical predicate a
which will in general make reference to specific objects and operations. In this sense, the style
of automatic programming with which we are concerned is much closer to ordinary computing
practice - and much farther away from the universal aims popular in artifical intelligence - than
the traditional style. All of this shows, in any case, that automatic programming - in the sense of
writing programs which write programs - is not intrinsically bound to universal aims.

For a general discussion concerning choices of problem classes in computing and mathematics,
see Kreisel[1981].

2. A simple example of special purpose automatic programming: list membership

The method which we use for synthesis of special purpose hidden surface elimination programs
was developed and will be presented in several stages. We will start by describing a simple scheme
for automatically generating special purpose programs, namely the scheme of specializing general
purpose programs. If this scheme is applied in a direct way to the hidden surface problem, the
results are unsatisfactory in that the special purpose programs P. which are generated for any but
very small scenes s are intractably large. However, having formed a picture of what the programs
P. are like, we are able analyse their defects. The result of this analysis is a series of modifications
to the P, which finally yield usable programs Q.. More precisely, the modifications apply not to
the synthesized programs Po, but to the method by which they are synthes:zed, so that we end
up with a direct method for synthesis of usable special purpose programs. We have chosen to
present the synthesis method in a step-by-step manner in order to increase clarity, but also for a
more important reason. Namely, the method by which the P, are produced is directly applicable
to a wide variety of problems, whereas the subsequent modifications are particular to the hidden
surface problem. Thus the multi-stage presentation has the virtue of exhibiting the method which
we use for the hidden surface problem as an instance of a general scheme for exploiting sweep
coherence; the scheme is: "take a general purpose algorithm and specialize it, analyse the results,
and introduce appropriate modifications."

The general side of our presentation, that is, the side concerned with the specialization of

programs, will begin with an example which lacks the technical complexities of the hidden surface

3

problem, but which illustrates several techniques which are used later. The example is essentially
a reformulation of the construction of a binary search tree by random insertion [Robson, 1979).
Let u be a list of elements from a linearly ordered set, and let n be an individual member of
that set. The computational problem which we wish to solve is that of determining whether n is
a member of u. We may set this up as a problem of the kind described in the introduction by
defining M(u,n,r) as "r = TRUE if n E u; r = FALSE otherwise". We assume that the sweep
coherence criterion for the utility of performing a computation in two stages is met; that is, we
assume that membership of n in u must be determined for many different values of n, but few
values of u. What is wanted is a synthesis program for M - a program SM which will take a list
u as input and produce as output a fast program SM(U) for determining membership in that list.

The appropriate "data stucture scheme" for exploiting sweep coherence in the current example
involves sorting and binary search. Since this method is provably optimal, no improvements by
the use of automatic programming are possible in this case.

With this warning in mind, let us proceed. The synthesis method for M consists of taking a
slightly peculiar algorithm for computing list membership and specializing it to the list at hand.
The algorithm to be specialized is given by the recursive delinition:

f(u,n) = if e apty(u) then FALSE else
if n < head(u) then f(taL(u),n) else
if n > head(u) then f(tail(u), n) else

TRUE

The specialization to a concrete list L is carried out by a conventional scheme: first symbolically
execute f as applied to L, then simplify the resulting decision tree by removing redundant decision
nodes. (Other terms for symbolic execution include partial evaluation [Ieckeman et al, 19761,
and repeated unfolding [Burstall and Darlington, 19771). A redundant decision node is one whose
outcome is predetermined by the outcomes at nodes along the path leading from the root of

the decision tree to the node in question. More precisely, if P1 ".. Pk are the decision predicates
appearing on the path leading to node N, and Q is the predicate at node N, then N is redundant
if Ai A A 2 .. Ak D Q is valid, or if Al A A 2.. -Ak D -,Q is valid, where Ai = Pi if the true branch
is taken out of Pi's node in the path leading to N, and Ai - -'Pi if the false branch is taken. The
removal of a redundant decision node is carried out by replacing the subtree of which it is a root
by the subtree rooted at its left or its right son, depending on wi*ether the predicate at the node
is predetermined to be true or false. Note that determining whether a node in a decision tree is
redundant involves deciding whether certain formulas are valid. In the current instance, all such
formulas are implications between conjunctions of inequalities containing n as the only variable,

so that the decision problem has an easy automatic solution.

Here is an example of the behavior of SM, the synthesis method for M just described, in a
concrete case. Suppose that the underlying ordered set for the membership computation is the
integers, and that we wish to compute SM((2,5)). We proceed by symbolically executing f((2,5),n),

arriving at the decision tree:

4

if n < 2 then
(if n< 5 then FALSE else
if n > 5 then FALSK else
TRUE) else

if n >2 then
(if ni < 5 then FALSE else
if n > 5 then FALSE else
TRUE) else

TRUE

The decision node represented by tbe second line of the above program is redundant, since
n < 2 D n < 5. Its removal yields:

if nz < 2 then FALSE else
if n > 2 then

(if n < 5 then FALSE else
if n > 5 then FALSE else
TRUE) else

TRUE

No redundant nodes remain. Hence the above program represents the final result of computing

SM((2, 5)). By the analysis given in [Robson 1979], the behavior of SM exhibits the following
general propcrties. First, the expected maximum depth of the decision tree generated by $m when
applied to a list L of length ft (assuming that L is given in random order with equal probability
assigned to each ordering) is k 1092 (n) for a constant k between 7.26 and 8.62 (the exact value of
kc is not known). Second, the number of decision nodes in SM(L) is exactly 2n, where again nt is
the length or L. (If we adopt a formulation in which the decision nodes have three branches [for
<, =, and >], then the number of nodes and depth are halved.) Thus the worst case running
time of the programs generated by SM, measured by the maximum number of decision nodes to
be traversed on the path to the result, may be expected to exceed the optimal worst case running
time obtained by sorting and binary search by only a small constant factor. Also the size of the
programs generated is linear in the length of L, so that in this respect as well SM is only a small
constant factor worse than optimal. Finally, note that expected worst case running time of SM(L)
is immensely better than that of the one stage algorithm given by f; the former is logarithmic in
the length of L, while the latter is linear.

This example illustrates the following points.

(1) Exploiting sweep coherence is by no means a marginal matter in computer science. The
sorted list is just one of many data structures devised for this purpose, but even taken alone sorting

*1 has been the target of a large amount of effort.

4 (2) In the case of list membership, the automatic programming approach failed to produce
* results which were as good as those produced by the right data structure. But on the other hand,

our approach did almost as well, and in a sense required less in the way of intellectual resources
than the conventional scheme. For, in constructing special purpose programs for individual lists L,
all that was required was the unwinding and optimization of a slight variant of the ordinary one
stage program for computing membership. On the other hand, the construction of the sort and

binary search method requires additional ideas - ideas which are not already implicit in the one
stage program. There are many computational problems exhibiting sweep coherence where a one

stage program exists, but where no fully satisfactory data structure for exploiting thle coherence

5

is available - the required additional ideas have not been found. Such problems are promising
candidates for the automatic programming approach. One such problem, which as we will see has
fulfilled its promise, is that of hidden surface elimination.

fr 3. The synthesis method for hidden surface elimination
Now we turn to the our principal subject, the synthesis of special purpose programs for hidden

surface elimination.

Recall that the hidden surface elimination problem is that of taking a scene 8 and a viewer
position p, and computing the appearancc of s from the viewpoint p with hidden surfaces removed.
Many approaches to the hidden surface elimination problem have been developed fSutherland et
al,19741. The general approach which will concern us here has the following attributes:

The scene to be displayed is represented by a set F of faces, where a face is a convex polygon
with some particular position and orientation in three dimensional space. A face is oriented also
in the sense that it has a front and a back side. (A face in turn may be given by the ordered list
of its vertices, and the vertices by their coordinates in three space.) The faces in F fit together to
form (approximations to) the surfaces of the objects in the scene. This representation scheme is
currently the one most commonly used in three dimensional computer graphics.

In order to display the scene from a particular point of view, the faces are first sorted into what
is called "priority order". A list L of faces is in priority order with respect to a given viewpoint
~p if whenever face i occludes face j from p, i appears after j in L. (A face i is said to occlude a
face j from p if some part of j is hidden behind i as viewed from p.) Once a priority ordered list
has been computed, the generation of a picture of the scene with hidden surfaces removed can be
carried out by a "painting" process, in which the faces are written onto the picture (eg by writing
onto the memory of a bit-mapped CRT) in the order in which they are given in L. Then, if one
face partially hides another, the hiding face will be written (or painted) after the hidden face; thus
elimination of hidden surfaces occurs by overwriting. The priority list approach appears to be the
best available for real time applications such as flight simulation; in such applications the painting
process is carried out largely by special purpose hardware. (Notes: (1) the faces which are oriented
away from the viewer - that is, the "back faces" must be eliminated before the paintinb~ is done.
(2) For some scenes and viewpoints, no priority order exists; ,,ee [Sutherland et al, 19741 for an
example. However, this happens rarely for naturally occuring scenes. The priority sorting methods
which we will consider will perform the priority sort if possible, and will indicate its impossibility
otherwise.)

Let P(F, p, L) denote the predicate, "L is a priority sorted list of the faces F from viewpoint

1]p". Our aim is to devise a synthesis program for P, that is, a program Sp which will take F

and generate a special purpose priority sorting program Sp(F); Sp(F) then takes the position p as
input, and generates a priority sorted list L for p.

We will proceed by first considering the result of applying the direct approach described in
section 2 - that of specializing a simple one stage algorithm and then removing redundancies from
the resulting decision tree. Then modifications of the direct method will be introduced one by one
until a usable final result is obtained.

Here is the brute force algorithm for priority sorting:

6

(1) Compute the entire occlusion relation; that is, determine for each pair of faces i,j with
=i 4 j whether or not i occludes j from p.

(2) Topologically sort the faces according to the occlusion relation computed in step (1). If
there is a cycle in the occlusion relation, then no topological sort is possible, and in this case the
outcome of the computation is an indication of failure. (Priority sorting consists exactly of finding
a linear order which is consistent with the occlusion relation; the task of extending an acyclic
binary relation to a linear order is the topological sorting problem. Algorithms for topological
sorting may be found in standard references such as Knuth[1968]).

Now, consider the decision tree which results from unwinding this algorithm for a particular set
F of faces. The decision tree To which we have in mind may be described in precise terms as follows.
Let n 1, and let (iI ,il), (i 2 ,j 2).. (i,(,-]), jn{,-1)) be an enumeration of the set of pairs of faces
from F given in the order in which they are considered in step (1) of the brute force algorithm.
To, then, is a full binary tree of depth n(n - 1) (with 2n(n,-1) nodes!). Let occ(p,i,j) denote the
occlusion predicate: occ(p, i, j) holds iff i occludes j from p. Then the predicate appearing at each
of the 2 k-I decision nodes at the kth level of the tree is occ(p, ik, jk). Evidently, each leaf of the tree
corresponds to a particular truth assignment to the occlusion predicates, that is, to a particular
occlusion relation on the faces. The computational result appearing at each leaf is the result of
topologically sorting the faces according to the occlusion relation associated with that leaf, or an
indication of failure if that relation contains a cycle.

The next stage in the process consists of the removal of redundant nodes from the decision tree.
However, this requires that we automatically decide whether assertions of the form occ(p, i, j) or
-occ(p, i, j) follow from sets of other assertions of the same form. As they stand these decision prob-
lems do not have any efficient solution. This difficulty can be overcome by simplifying the predicates
which appear in the decision tree in the following way. For particular faces i and j, the predicate
occ(p,i,j) can be expressed as a conjunction of simpler predicates occl(p,i,j)... occ,(p,ij). The
number r of such predicates is just the surh of the number of vertices in i and the number of vertices
in j. Each predicate occ,(p, i,j) has the form, " the kth vertex of j (or i) lies below (or above)
the 'horizon' defined by the Lth edge of i (or .), as seen from p", or, equivalently, "p lies above (or
below) the plane defined by the endpoints of the /th edge of i (or j) and the kth vertex of j (or i)".
Thus, each predicate occ,,,(p, i, j) can be written as a linear inequality in the coordinates pZ, p, p
of the viewer position p, with coefficients depending on ij. Now, let us rewrite the decision tree To
to get a decision tree Ti in which the predicate at each decision node is a linear inequality. This
is done by expanding out the occlusion decision nodes according to the scheme:

if occ(p,i,j) then tI else t2 -4

if occi(p,i,j) then
if occ2(p, i, j) then

if occ,(p,i,j) then t, else

t 2 else

tg else

7

We are in a good position to automatically remove redundant nodes from T1, since (1) the
predicate at each of its nodes is a linear inequality, (2) the negation of a linear inequality is a linear
inequality, and (3) the-question of whether a given inequality follows from a set of inequalities
can be efficiently decided by use of the simplex algorithm. Further, on intuitive grounds, it is
to be expected that the removal of redundant nodes will reduce the size of Ti by a very large
factor, since, once the, say, fifth level of the decision tree has been reached along a given path,
the tests met so far along the path will have severely constrained the position of the viewer, and
accordingly it is likely that the outcomes at the great majority of nodes below that level will in
fact be predecided.

Of course, the problem with T, from the practical standpoint is that, even for very smaU
numbers of faces, its size is intractably large. In practice, however, one will not proceed by first
generating the decision tree T1, and then optimizing it, but instead will optimize the tree while
it is being generated. This can be done by constructing the tree from top down. When a new
decision node is to be generated, one asks first whether its outcome is predetermined. If so, then
one need not add the node to the tree,: instead, one proceeds directly with the generation of its left
or right subtrees, depending on whether the predicate at the node is predetermined to be true or
false. If this scheme is used, then no redundant nodes are ever generated; instead, the optimized
tree is produced in one pass.

So, we have shown how to automatically construct an optimized decision tree T'2 for doing the
priority sort for a fixed set of faces, but variable viewpoint. Although we expect that T'2 will be
much faster than the brute force method from which it sprang, it is still too large to be of practical
use.

The following observations will allow us to do much better. (1) The entire occlusion relation
need not be determined in order to do the priority sort. (2) A partial determination of the occlusion
relation which is insufficient to do the entire sort may still allow a part of the sort to be carried out.
The former observation will allow us to shorten the tree, while the latter will make it possible to
diminish the size of the results appearing at the leaves, by moving as much information as possible
about the output of the computation to nodes closer to the root of the tree.

Let I be a set (I, .. *Ik} of linear inequalities in the the coordinates pz,,p,,p, of the viewer
position. We may think of I as representing the simplex of points in three dimensional space which
satisfy all of the inequalities I,. .. .'k. Let canocc(I, i, j) denote the predicate, "there is some point
satisfying each of the inequalities in I from which the face i occludes the face j". Now, consider an
arbitrary node N in T2. Let IN be the set of inequalities which are assumed to hold at N - that is
to say, the set of inequalities which must hold if N is to be reached in the course of executing the

, I decision tree. Let G be the graph of canocc(IN, i, j) viewed as a binary relation on the set of faces.
If G is acyclic, then a topological sort of G will yield a priority order which is valid for all view
points in the simplex IN. In this case, the subtree rooted at N is not needed at all; a correct priority
order can be generated without further case analysis. Suppose, on the othier hand, that C contains
cycles. Let S, ...Sk be the strongly connected components of G. (Recall that a strongly connected
component of a directed graph is a maximal set S of points from the graph having the property
that, for any two points p, q E S, there is a path from p to q.) As long as there is more than one
strongly connected component - that is, as long as G is not itself strongly connected - a part of the
priority order can be determined at the current stage. Let G' be the (acyclic) graph which results

from collapsing the strongly connected components of G into single vertices. (Formally: the vertices
of G' are the strongly connected components S, .. .Sk of G; I& --+ SiJ is an edge in G' iff for some
p E Si, q E S3, lp -~ qJ is an edge in C.) The result of topologically sorting C' gives an ordering to

8

the S1 .. .S, which constitutes a partial priority sort, in the following sense. Let G" be the graph of
any occlusion relation which is consistent with inequalities IN. If G" has a priority ordering at all,
then it has one of the form append(p(S 1),p 2(S 2) ... p(Si,)) where Si,-.. *Si, is the topologically
sorted ordering of G', and where pj(Si,) is some permutation of Si,. Thus, the set of faces has
been partitioned into subsets S.' .Sk such that the mermbers of each Si may be listed consecutively
in any final ordering, and the order in which the Si appear has also been decided. It is only-the
orderings within the Si that remain to be determined. All of this has two consequences: (1) the
occlusion or lack of occlusion between faces in different strongly connected components need not
be considered in the decision tree rooted at N. Further, the strongly connected components may
be considered separately; if desired, a different decision tree may be generated for each. (2) The
decision tree rooted at N needs to specify only the orderings within, and not between the strongly
connected components, provided that the ordering S,.. .S, is stored in one way or another at the
node N.

The observatioa of the last paragraph indicate in a fairly direct way how 72 may be improved
on. The result T3 of this improvement has a structure which is a bit more complicated than that
of an ordinary decision tree, in that it has internal nodes which are not decision nodes. One way
of describing T3 is as a simple loop-free program which is built up from constants denoting lists of
faces by use of (1) the conditional operator: "if P then t, else t 2 " where P is a linear inequality in
pz, py, p., and (2) the append operator: "append(tl, .. .t)". Thus, T3 differs from a decision tree
only in that 73 makes use of two operators ("if" and "append"), rather than just one ("if") in
constructing its result.

The method by which T3 is built follows closely the method used to build 72. The difference
is that the canocc graph is employed to guide the selection of face pairs for case analysis, and
also to split the computation of the priority ordering into separate computations for separate
strongly connected components. The method for synthesizing T3 is given below by the recursive
program R(I, F). Here, I is a set of inequalities, and F a set of faces. The result returned by
R(I,F) is a program which computes an ordering for the faces in F; under the assumption that

the inequalities in I hold, this ordering will be a correct priority ordering of the faces. Z makes use
of a subroutine R1 which takes care of generating the individual tests occi(i, j).. .occ,(i,j) which
together determine whether i occludes j. R and 21, then, are as follows: (For the sake of clarity,
we make the simplifying assumption here that the set of faces F has a priority ordering from all
viewpoints; the other case is not difficult to handle.)i ZfI, F).

(1) Compute the graph G of canocc(I,i,j) for i 3 j E F.
(2) If G is acyclic, then topologically sort G, and return the constant representing this sorted list

of faces.
If G is strongly connected then:

(a) choose i,j such that occ(i,j) is not decided by I.
(b) return R1(1, F,i,j, 1) (This does a case analysis according to whether i occludes j)

Otherwise:
(a) Let Si...Sk be the strongly connected components of G. Topologically sort the graph
G' gotten by collapsing the Sj, getting an ordering Si,. . .Si, of the Sj. Compute the pro-
grams Pi = (I, Si) for priority sorting the S. Return the program, "append"(P,. ..)

I9

-"v

R,(1, F, i, n):

(Here (i,j) is the pair of faces to be dealt with; n is the index of the occlusion test to be
generated)

(1) If n is greater than the number of occlusion tests needed for the faces i,j - that is, if all the
tests have already been generated - then return P(I, F)

Otherwise:
(a) If I implies that occ,(i,j) holds then return R1(1, F,i,j,n + 1).

(b) If I implies that occn(i,j) does not hold then return R(1, F).
(c) Otherwise, generate the test; return the program:
"if" occ,,(i, j) "then" R,(I U {occ,,(i, j)}, F, i, j, n + 1) "else" (I U {-'occ,(i, j), F)

4. Results of experiments

A program for synthesis of special purpose priority sorting programs has been implemented on

the Stanford computer science department PDP-IO/KL-1O computer in MacLisp. The program has
been tested on one large scale example so far, namely, a description of a hilly landscape derived
from a data base provided to the author by the Link division of Singer corporation (Link is a
manufacturer of flight simulators). The description consisted of a set L or 1135 faceg making up,
roughly speaking, a triangulation of the landscape'. The implemented program is based directly
on the method described in the last section, but includes the following important refinement. (There
are also a number of less important refinements and implementation details whose description is
beyond the scope of the current general presentation of the method).

In almost all three dimensional computer graphics applications, the field of view covered by
the image to be generated is limited. For example, in several of the flight simulators manufactured
by Link, the field of view or "window" spans 48 degrees horizontally, and less than 40 degrees
vertically. We exploit this fact by performing an initial case analysis according to the direction
in which the viewer is looking. Specifically, this is what is done: Consider the projection of the
viewing direction v onto the x, y plane. We divide the "pie" consisting of the set of all possible such
projections into ten equal "slices", each 36 degrees wide. Now, one face can visibly occlude another
only if there is a ray from the viewer's eye which passes through face i and face j and whose
direction lies within a certain angular distance the viewing direction v. So, the assumption that
the x, y projection of v lies within a given 36 degree slice reduces the number of possible occlusions

between faces, since it places limitations on the relative positions of visibly occluding pairs of faces.
In any case, the ten slices of the pie are considered separately, with field of view parameters of
48 degrees horizontal and 40 degrees vertical, and with the additional assumption that the angle
of the viewing direction to the x,y plane (that is, the angular deviation from horizontal flight)
is less than 30 degrees. The other cases, where the angle of view is steeply up or steeply down,
arc handled separately. For each slice, a separate initial canoce relation is computed; it is this
restricted canocc relation which forms the starting point for the method)Z described in the last
section.

1. The description used did not include every face in the data base provided by Link; there are some 199 faces
missing. The reason for the exclusion derives from errors of interpretation which occured in the process of transfering
the data base from Link to Stanford. The description which resulted from the removal of the "bad faces" was
displayed and inspected visually; its appearance was that of a hilly landscape with normal features. Thus the
description, though not identical to the Link data base, is as reasonable a test as any of the effectiveness of our
methods.

10

In the experiments perf~rmed so far, the synthesis method has been applied to the landscape
L for only one of the ten pie slices.- The features of the landscape (mountains and valleys) are
oriented in more or less random directions, so there is reason to believe that similar results would
be obtained for each of the pie slices. Also, the steeply up and steeply down orientations should

yield results which are better, and not worse, than the horizontal orientations.

The synthetic program T3 produced for priority sorting for the landscape within one slice of
viewer directions had the following attributes:

Worst case number of decision nodes encountered during any execution of T3 : 53
Expected number of decision nodes encountered during an execution of T3, assuming that at each
decision node the two possible outcomes of the decision are equally likely: 27

Total number of decision nodes in 73j: 85

For the flight simulation application, one would wish to implement not T3 itself, but rather a
variant of T3 which takes advantage of the fact that, in flight simulation and similar applications,
the position of the viewer changes smoothly from frame to frame. This can be done by arranging to
keep a record from each priority computation of the result of that computation, and of also which
computation path was taken, that is, a record of which branch was followed at cachi decision node
encountered in the course of the computation. Then, for following frames, the program checks
whether the new viewer positions yield new computation paths; as long as thc computation path
does not change, there is no need to modify the priority sort computed at an earlier frame. Also, as
long as the change takes place fairly late in the computation path, only a part of the priority sort
will need to be recomputed. In any case, a machine language program of the kind just described
can be automatically derived in a straight- forward manner from 73. The construction of a machine
language program has not actually been carried out, nor is there any reason to do so for the present
purposes, since the relevant parameters (size and speed) of the machine language program can be
easily derived from T3. Here are those parameters.

Size(estimate) : 1500 36 bit words

Expected number of machine language instructions executed in order to verify that a given priority
sort is still valid for a new frame: 8 instructions per plane * 27 planes = 216 instructions

Thus, the total size of the synthetic program, with all orientations accounted for, would be

about 1500 *12 = 18,000 words.
The average number of instructions executed per frame should not be much higher than

the expected number of instructions required for verification since, for most new frames, the

* It is difficult to estimate in the general case how the size and speed of the special purpose
* 2 program produced by our mnethod for an arbitrary scene will depend on the characteristics of that

* scene. For one thing, it is not only the size of the scene that is relevant, but also the details of
its structure. (To see this, note that there are scenes of arbitrary size with the property that one
priority ordering works for all positions of the viewer.) However it may be useful if we give some

* extremely rough estimates based on our experience with synthetic programs derived for fragments
of the landscape used for the experiment. It appears that for this kind of scene, both the size and
the running time of synthetic programs are given by expressions of the form k * f(n) * n, where
f(n) is a function which grows very slowly with n; perhaps f(n) r--log(n). The constant k of

proportionality for the running time (in machine instructions executed) is small - something like
.02, whereas for the size (in words of memory), k is something like 10.

5. Comparison to other algorithms for priority sorting

There are two algorithms described in the literature which exploit object coherence in perform-
ing priority computations, namely those of Schumacker [Sutherland et al, 1974], and Fuchs[1980].
(Another algorithm which agressively exploits object coherence - though not for priority sorting -
is that of Ilubschman and Zucker[1981].) These algorithms are similar to each other in that they
both make use of a hierarchical decomposition of the scene by means of a collection separating
planes; the separating planes are computed off-line. Such a decomposition is referred to as a
"binary space partitioning tree" (BSP) by Fuchs. There is a superficial resemblance between the
special purpose programs which we produce and the programs which use the BSPs at runtime to
perform the priority sort. The resemblance is that in both cases, the method involves computing
the viewer's position relative to a set of planes. The resemblance is superficial because the following
significant differences exist: (1) The BSP algorithms of Schumacker and Fuchs traverse the binary
space partitioning tree - comparing the viewer position to the plane at every node - rather than
executing a decision tree (or the like), in which only a fraction of the nodes are visited. (2) The
planes which appear at decision nodes in our synthetic programs are not separating planes in any
significant sense (although they will separate one face from another); in any case, there is not the
kind of systematic geometric relationship between the planes and the priority orderings produced
that exists for BSP algorithms.

The algorithm of Schumacker was used by Link for dealing with the landscape L on which
we performed our experiments. The number of separating planes for L was about 200 (it was not
possible to get a precise figure), so that the number of plane comparisons needed for a priority sort
in this case is 200/27 = 7.4 times the expected number required by our synthetic program. Also,
the overhead per plane for keeping track of the traversal of a BSP is higher than the overhead per
plane for our synthetic progam; at least 12 (rather than 8) instructions per plane are needed. So all
in all, the synthetic program is about 1.5 * 7.4 = 11.1 faster than Schumacker's for this example.
This comparison holds for Fuchs' algorithm as well, since the BSP which it would construct would
not in any case be smaller than that used for the Schumacker algorithm. However, the space
requirements or Schumaker's algorithm are smaller by about a factor of ten than ours. This is
not as bad as it sounds, since the space needed to store a synthetic program for priority sorting,
though large, is still of the same order as the space needed for storing other data about the scene,
such as smooth shading and color information. Another disadvantage of our approach is that the
amount of computer time required to construct synthetic programs is quite large. The synthesis
of T3 (which deals with only one of twelve orientations) took about one hour of cpu time on a
PDP-10/KL-10 computer. Still, this is not prohibitive if the scene for which the synthesis is being
carried out is to be used for many simulations.

The main advantage of our method over Schumacker's is not speed, but flexibility. Although
our trial landscape L is separable into clusters in the way required by Schumacker's algorithm,
we make no use whatever of that fact; our results would be the similar for another landscape of
the same general kind for which no set of separating planes existed. The restriction to separable
scenes needed for Schumacker's algorithm is a serious one in pratical terms; designers of data
bases intended for use with Schumacker's algorithm need to expend substantial amounts of effort
to assure that the separability criterion is met. The algorithm of Fuchs does not impose this
restriction, but it has another kind of problem. Namely, as the size of a scene grows, the number
of nodes in the BSP can increase very rapidly. In Fuchs[1981], an upper bound on the number of

12

i

nodes is given which is cubic in the number of faces. If this bound is approached for the scene
L, then Fuchs' algorithm is not usable. Of course, there is no reason to expect a priori that the
upper bound is a relevant estimate for situations which arise in practice. For the considerably
smaller examples which Fuch's considered, the number of nodes in the BSP did not grow at a rapid
rate. So, without further data, it is difficult to estimate exactly what thle result of applying Fuchs'
algorithm to the landscape L would be.

6. Related work on program synthesis and manipulation

As indicated earlier, the techniques which we have used for producing and optimizing decision
* trees are adapted from standard methods which have been employed in many fields, including

program transformation [Burstall and Darlington, 19771, planning (Sproul 1977], program synthesis
of the traditional kind [Manna and Waldinger, 19801 and program specialization [Beckeman et al
1976; Emmanuelson, 1980]. The work reported here differs from work in all of these fields in
more or less the same way, namely, in that we treat classes of problems defined in a mathematical
rather than universal style. For example, in program specialization, one looks for methods which
can be usefully applied to any program in a given language; thus, the goal of the enterprise is
the development of universal methods which will apply to all problems formulated in a particular
way. Another example is that of "knowledge based" progam synthesis of the kind developed by
Barstow(19771. The aims are again universal, both in the sense that the class of problems to be
treated, although restricted to the program's " domain of expertise", is still much wider than the
class which we treat, and in the sense that the mechanism for synthesis is intended to have universal
application; only the "knowledge" encoded in a set of production rules is particular to the domain
of expertise. In contrast, the results which we obtained for the hidden surface elimination problem
depended on adapting our methods specifically to the problem at hand.

There are many algorithms from the mainstream of computer science which may be seen as
synthesizers of special purpose programs. For example, there is a wide and useful class of algorithms
for recognition of patterns in strings [Aho, Ilopcroft, and Ullman, 19741 which, when given the
pattern, proceed by constructing a finite automaton which in turn performs the search. A finite
automaton, like a decision tree, is a simple variety of program, and in this sense, these algorithms
construct programs for the special purpose of finding an instance of a pattern in a string. The
hidden surface elimination algorithm described in section 3 should be regarded as a new piece of
work in this tradition.

13

References

Aho, A.V., Ilopcroft, J.E., and Ullman, J.D.[19741, The design and analysis of computer algo-
rithms,Addison-Wesley, Reading Mass., 1974, see Chapter 9: pp. 317-361

Barstow, 1).(19771, A knowledge based system for automatic program construction,Fifth International
Joint Conference on Artificial Intelligence, Cambridge, August, 1977

Beckeman,L., Ilaraldsson, A., Oskarsson,O., anrd Sandewall, B'.11976), A partial evaluator and its
use as a programming toolArtificial Intelligence Journal 7,1976, pp. 319-357

Burstall R.M., and Darlington, J.[1977], A transformation system for developing recursive pro-
grams,JACM, Vol. 24, No. 1, January 1977

Emmanuelson, P.119801, Performance enhancement in a well-structured pattern matcher through
partial evaluation, Ph.D. Thesis, Software Systems Research Center, Linkiiping University, Link6ping,
Sweden, 1980

Fuchs, II., Kedem, Z.M.,and Naylor, B.F.[1980, On visible surface generation by a priori tree
structures,Computer Graphics, Vol. 14, No. 3, July 19 8 0 ,p. 124

Hubschman, H., and Zucker, S.W.[1981], Frame-to-frame coherence and the hidden surface com-
putation: constraints for a convex worldComputer Graphics, Vol. 15, No. 3, August 19 8 1,p.
45

Knuth, D.E.[19681, The art of computer programming, vol 1: Fundamental algorithms, Addison-
Wesley, Reading Mass., 1968, pp. 258-268

Kreisel, G.119811, Neglected possibilities for processing assertions and proofs mechanically: choice
of problems and data,in: P. Suppes fed.], University-level computer-assisted instruction at Stanford:
1968-1980. Stanford Calif.; Stanford University, Institute for Mathematical Studies in the Social
Sciences, 1981

Manna, Z., and Waldinger, R.[1980], A deductive approach to program synthesis,ACM Transactions
on programming languages and systems, Vol. 2, No 1., January 1980

Newell, M.E., Newell, R.G., and Sancha, T.1.[1972], A new approach to the shaded picture prob-
lem,Proc. ACM National Conference, t972

* Robson, J.119791, The height of binary search trees,The Australian Computer Journal, 11(1979),
pp 151-153

Sproull, R.F.11977], Strategy construction using a synthesis of heuristic and decision-theoretic
* methodsXcrox IARC technical report CSL-77-2, July, 1977

Sutherland, I.E.,Sproull, R.F., and Schumacker, R.A.[19741, A characterization of ten hidden-
surface algorithms,Computing Surveys, Vol. 6, No. 1, March 1974

